conductive contamination underneath surface mount isolated power supply causing line to earth surge failure(marked up photo)

Surge Test Failure Due to PCB Manufacturing Process

We recently had a piece of customer equipment fail the IEC 61000-4-5 surge test at 2kV line-to-earth. There was a loud crack of an electrical arc forming, the unit stopped responding to communications and was making a hissing/squealing noise.

To give it the appropriate technical term, this was “A Bad Thing”.

Using the thermal camera we quickly found several hot components all on the 3V3 supply line that we supposed had been damaged by the surge. The hissing noise was the DC/DC converter in a cycle of burst mode trying to supply too much current before shutting down.

However these were all secondary side components on the isolated part of the system. How did the surge get across the safety barrier? The designer was using correctly rated parts and the PCB creepage distances were dimensioned correctly.

As part of the fault diagnosis process, we used our hot air solder rework tools to remove one of the isolated power supplies providing a low voltage supply to the AC mains monitoring circuitry. Underneath we found this:

 

conductive contamination underneath surface mount isolated power supply causing line to earth surge failure(marked up photo)

 

The samples had been hand soldered by the customer, unfortunately leaving a large amount of solder paste underneath the power supply.

Whilst this was not a short circuit across the safety barrier it did reduce the creepage distance significantly. When a 2kV surge (1.2/50us, 12 ohms) was applied from AC mains to earthed secondary this pollution was enough to cause an arc to form and into the 3V3 supply pin (centre right).

This voltage was enough to fry several components on the 3V3 line, rendering the board inoperative.

 

Lessons Learned

  • Hand soldering prototypes is OK provided you take great care in the process and cleaning the board afterwards
  • Professionally manufactured boards will generally avoid this issue
  • Apply a line-to-earth safety test on your AC mains powered products to check your samples
  • We are going to start a policy of performing a line-to-earth safety test on all AC mains powered products coming into the lab for testing from now on to try and catch problems like this.

 

 

Low Frequency, Common Mode, Conducted Emissions

Here is an interesting problem I had working on piece of industrial equipment. The customer had some conducted emissions failures at another EMC lab and needed some help resolving them.

The lessons from fixing this problem was that the first thought is not always the correct one, and that sometimes, all you need is a bit of green-and-yellow earth wire!

 

Outline

A block diagram of the system is shown below with the major components shaded.

An industrial power supply feeds power to the controller (a custom PCB connected to a Raspberry Pi) and to the power measurement board (measures the power consumed by the load).

 

 

Conducted emissions on both the Ethernet port and the AC mains port on the power measurement board were both dominated by a low frequency hump around 700kHz.

 

AC Mains

Ethernet

Notice how the shape or profile of the emissions is almost identical. To my mind, this points towards a single component in the system causing the same noise to be seen everywhere.

 

Simplify First

The first thing I wanted to do was to simplify the test setup as much as possible. I replaced the industrial power supply (often designed for Class A emissions performance) with my trusty Thandar TS3022S adjustable linear bench supply.

The idea here was to eliminate the industrial power supply from my inquiries.

 

 

Wow, what a big difference!

 

So the conclusion here is that the industrial power supply DC output is very noisy, that this noise is propagating through the system, and manifesting as conducted emissions on the outputs via a variety of coupling paths.

 

Differential Mode Filtering

Because conducted emissions noise in this lower frequency range tends to be differential in nature (+ve relative to -ve), my first thought was to implement a differential mode filter on the output of the power supply.

 

 

I’ve got a little filter prototype board that I use in situations like this. This pi filter was made up from two Panasonic FC series 470uF, 25V on either side of a Wurth 33uH iron powder inductor.

 

 

Unfortunately it did nothing to the emissions!

 

Could it be Common Mode?

This sounds like a obvious question to ask in hindsight. Most EMC problems are common mode in nature, I’m just used to thinking about LF conducted emissions as a differential mode problem.

Let’s try a common mode mains filter on the output of the power supply to see if this is indeed the case.

 

 

That’s much better! It looks like the problem was common mode noise after all.

 

This Time It Was Actually A Good Idea…

Common mode noise in this instance is current on both the DC output lines together. But, as I point out in one of my talks, current flows in a loop and always returns to the source. So where is this common mode current returning to? What is it’s reference?

Our common mode emissions measurements are being made in relation to the metalwork of our screened room test setup which is connected to the AC mains Protective Earth (PE).

The AC mains line to each LISN contains a PE connection and, inside the LISN, this is connected directly to the floor of the chamber.

Logically then, connecting the DC negative to the PE on the power supply will provide a shorter path for this common mode noise from the power supply.

 

 

Will this have the desired effect on emissions?

Yes. Yes it does.

AC Mains

Ethernet

 

Conclusion

Ooooooh, bloomin’ common mode noise. Not just for the higher frequencies but lower ones too!

This was a fun half day project fixing this particular problem. Much nicer to be able to recommend a low cost cable assembly than £$€ 20 worth of filter block.

If you’ve got any EMC problems then give me a call, I’d be happy to help.

 

 

Choosing EMC/Radio Standards for CE/UKCA – Generic vs Specific

A short post prompted by a (summarised) request from a customer:

 

We’d like to test to the following standards for our CE/UKCA marking

– EN 61326-1 (Class B emissions, Industrial immunity)
– EN 61000-6-2 (Industrial Level Immunity)
– EN 61000-6-3 (Class B Emissions)

 

This customer is very compliance conscious, as their products end up in all kinds of harsh and hazardous environments where they are protecting the health and safety (and lives in many cases) of their customers.

As such, it is understandable that they want to “throw the kitchen sink” at the EMC performance. Selecting Class B emissions and industrial immunity is a great way of demonstrating the robustness of your product in a wide range of electromagnetic environments.

So, why not quote all of the standards on the Declaration of Conformity (DoC)?

 

Guidance is Available

Thankfully the European Commission has published guidance on selecting Harmonised EMC and Radio standards for assessing the product to.

In each of these standards, a primacy or order of application, is given to the Harmonised Standards.

 

Guide for the EMCD (Directive 2014/30/EU)

4.3.2.2 Relevant harmonised standards

The selection of the relevant harmonised standards is the responsibility of the manufacturer.
When the manufacturer chooses to apply harmonised standards he shall select them in the following precedence order:

– Product-specific standards (if available)
– Product family standards (if available)
– Generic standards

Product-specific (family) standards are those written by ESO’s taking into account the environment, operating and loading conditions of the equipment and are considered the best to demonstrate to compliance to the Directive.

 

An example of a product specific standard would be EN 61326-2-6Electrical equipment for measurement, control and laboratory use – EMC requirements – Part 2-6: Particular requirements – In vitro diagnostic (IVD) medical equipment (IEC 61326-2-6:2012)”

These product specific standards often refer back to the root family standard, EN 61326-1 in this case.

Only if the manufacturer’s equipment does not fall into a product standard should the generic standards be applied.

 

Guide to the Radio Equipment Directive 2014/53/EU

5.2 Generic harmonised standards vs product specific harmonised standard

A manufacturer which has the intention to apply a harmonised standard for the conformity assessment of its products, has to apply in priority the product specific harmonised standard and only if this one is not available, the generic one, in order to benefit of presumption of conformity with the essential requirements of the RED.

 

Applying Multiple Standards

There are cases where applying several different Harmonised Standards could be the correct thing to do.

For example, if the equipment is a piece of measurement equipment that incorporates a lot of IT functionality (networking, data storage, PC control) then the manufacturer could decide to assess against EN 61326-1 for laboratory equipment and against EN 55032 for IT equipment. Both standards would appear in the test report and on the DoC.

 

Presumption of Conformity

Remember that using Harmonised Standards (or Designated Standards for UKCA) gives you a “Presumption of Conformity” without further requirement to demonstrate compliance with the relevant directives/laws.

As this interesting piece on kan.de notes:

 

“Ultimately, the presumption of conformity is no more than a reversal of the burden of proof. This means that a product complying with the relevant [harmonised] standards may be challenged, for example by the market surveillance authority, only if actual evidence can be produced that the manufacturer has violated the requirements of the directives.”

 

Annex ZZ of a Harmonised Standard is your friend when it comes to understanding this link between the standards and the directives.

 

When the DoC Doesn’t Quite Cover It

This example of EN 61326-1 illustrates one of the problems of applying a Harmonised Standard that has multiple levels within it.

In this case, the EMC performance of equipment complying with EN 61326-1 could fall into one of six distinct categories.

Emissions

  • Class A (industrial)
  • Class B (domestic)

Immunity

  • Controlled (shielded and filtered environment)
  • Basic (domestic/commercial)
  • Industrial (heavy machinery)

On the face of it, a product tested to Class A / Controlled (poor EMC performance) can’t be distinguished from one that has passsed Class B/Industrial limits (excellent EMC performance).

What to do?

The way I suggest overcoming this and informing the end user a little more clearly about the performance of the product is to explicitly state in the DoC what levels the product was assessed against during any testing.

Example:

 

This equipment was assessed against the following Harmonised Standards:

– EN 61326-1:2013Electrical equipment for measurement, control and laboratory use – EMC requirements – Part 1: General requirements” (Class B emissions, Industrial Immunity)

 

I hope you enjoyed this short dive into standards land. It’s a nice place to visit but you wouldn’t want to live there!

Speak soon,

James

 

dc dc converter emissions before and after with notes on sources

Li-Ion Battery Charger DC/DC Converter – Radiated Emissions Problem Solving

I had a challenging EMC problem solving project in the lab this week.

A customer making a miniaturised 4 cm^3 buck-boost DC/DC converter for Li-Ion battery charging was having radiated emissions issues. The small size meant that adding common mode chokes to filter the input and output connections wasn’t practicable so a more in depth investigation was required.

 

How bad is it?

Here are the emissions for the EUT without any modifications. The green reference trace is the AC/DC mains power supply being used to power the EUT. It is failing the Class B limit (blue) by some margin.

unmodified dc dc converter radiated emissions

Initial Isolation and Investigation

To investigate the emission radiation source (not the cause yet), I placed large clip on ferrite cores around the DC input cable and the battery output cable to reduce emissions directly from the cables.

 

dc dc converter with ferrites on cables

This improves some of the frequencies but not all of them. If the radiation was entirely cable related then this would have dropped the emissions significantly. As it hasn’t, we can conclude that the majority of the emissions are coming from the PCB.

The three peaks we’ll focus on are 180MHz, 300MHz and 500MHz.

Next step is to turn on the spectrum analyser and break out the near field probes. I’ve got a selection of commercial and home made probes but the ones I keep coming back to are the give-away probe cards that I have on my exhibition stand at trade shows.

 

Switching Noise Investigation

The location of the emissions for the 180MHz and 300MHz emissions was initially puzzling. Mostly it was centred around the drain of Q1. If we consider the operation of the circuit, Q1 is turned on permanently in boost mode with Q3 acting as the normal switching element and Q4 acting as a synchronous rectifier. Where is this switching noise coming from?

 

buck boost in boost mode

 

Those of you familiar with synchronous switching converter operation will be shouting at the screen right now. Of course, the answer is bootstrapping.

The high side N channel MOSFETs Q1 and Q4 need a gate voltage higher than their source voltage + their threshold voltage to turn on. In this kind of circuit, this voltage is derived from the switching node via a bootstrap circuit.

This explanation on bootstrap circuit operation from Rohm saves me from re-inventing the wheel.

Even though Q1 is nominally on all the time it still needs to perform a switching operation with Q2 to charge up the bootstrap capacitor powering it’s gate driver circuit.

Checking the datasheet, this switching operation takes just 100ns. That’s very fast indeed and explains the source of our switching noise!

The same bootstrap operation is happening to provide the drive voltage for Q4 but because the boost node is continuously switching this voltage is being provided without such a short switching event.

Due to space constraints it wasn’t easy, but I managed to get the microscope out and modify the board to accept a small but high current ferrite bead in series with Q1 drain.

 

 

500MHz Emission

It didn’t take long to narrow down the 500MHz emissions to the boost output diode D1 with a large amount of ringing on the cathode.

The interesting thing about this diode is that it is only conducting for a very brief period in the dead-time between Q3 turning off and Q4 turning on. Dead time between these parts is set at 75ns, again a very short time period. Good for reducing switching losses, disadvantageous for EMC emission.

 

dead time turn on for the parallel boost diode

 

The part selected for this was a slightly electrically over-rated 40V 1A, SMB packaged part with a reasonable capacitance. Switching 1 amp of current through this part for only a brief period of time before shorting it out and discharging the diode capacitance was causing the ringing to occur.

A ferrite bead was added in series to damp this as the customer wasn’t too keen to head down the rabbit hole of investigating specifying a lower capacitance rated new diode or looking at whether the diode could have been removed altogether at the expense of slightly higher power dissipation in Q4.

Interestingly, this is what the emissions looked like with the diode removed but still with the lower frequency emissions present from the input transistor drain. Note the wideband reduction in emissions above 300MHz.

 

dc dc converter emissions plot with the parallel diode d1 removed from the circuit

Solution

With both of the ferrite beads in place the emissions profile of the EUT was reduced to meet the Class B limits. With more time the peak at 160MHz could be investigated and further reduced but project time pressures and the customer understandably wanting a “good enough” result meant we concluded this investigation here.

 

dc dc converter emissions before and after with notes on sources

The end.

DC/DC converters are often provide a challenging EMC opponent when it comes to radiated emissions. I was glad of the opportunity to work on this project and provide a successful result for the customer. This is the kind of work that I love.

The advantage of being an EMC-consultant-with-a-test-lab combined is that this kind of work can be compressed into hours of work rather than days/weeks oscillating between your lab and the test lab. Problems Fixed Fast!

I hope you found this piece useful, get in touch via the usual channels if you have any questions.

Cheers,

James

 

 

 

HDMI? More like HDM-WHY? Thoughts on Cable Shield Grounding

Ladies and gentlemen, I present this week’s episode of “Crimes Against Cables”

 

Example 1: “I had some leftover components to use”

I’ve seen plenty of interesting EMC “solutions” over the last several years to deal with radiation from cables.

A common one is to separate the shield ground from the signal ground with some combination of components (beads, capacitors, resistors). This approach appears to be particularly common on industrial touch screen display modules for some reason.

poor USB cable grounding suggestions

 

This is (in 99% of cases) a bad idea. I’m not sure what you are hoping to achieve by this and, probably, neither are you 😉

In fact I dedicated a small part of a recent talk to discussing grounds and grounding – you might want to check it out.

 

Example 2: How to Break a Shield

Another notable poor example was an otherwise well crafted piece of military equipment. Shielded connectors and cables all over, it looked like it would be survive some serious electromagnetic abuse (as anything being tested to MIL-STD-461 should).

However,

insulating plastic insert bad idea

insulating plastic insert cross section detail

 

This ends up being not only an emissions problem but an immunity one as well as the cables are just as capable of conducting noise into the shielded case.

This sort of thing can be solved with something like an EESeal type component or by a secondary external screen over the entire assembly.

 

Example 3: Plastic Fantastic

I’ve even seen ferrite cores that were just a moulded plastic lump to appear like cores. Maybe it was a “special” plastic? I never found out, it didn’t help the emissions either.

vga cable ferrite just plastic

But this next one was a first even for me.

 

Example 4 – The Strangest Decision Yet

I was performing a full set of EMC tests to EN 55032 and EN 55035 for a customer. The product had a HDMI interface so obviously there were radiated emissions problems.

The first step as a diagnostic was to use some copper tape to make a connection between the connector shell and the metal back plate – the anodised chassis and EMI gasket material provided was not making a good contact.

This didn’t help so I buzzed the connection with the multimeter to make sure I had some continuity and… nothing.

No connection between the connector shell and PCB Ground.

OK, so there must be a capacitor in series with the shield connection. Fetch the capacitance meter and… 1.2pF.

The board designer had neglected to connect the shield of the HDMI to PCB Ground. It’s a new one for me!

The addition of copper foil to bridge the connector pins to nearby solved the emissions problem but left me wondering why someone thought that was a good idea.

 

I’m going to leave you with this closing thought:

I’ve yet to come across an EMC problem where floating or not connecting a shield ground has improved the situation.

 

 

 

ESD Latch Up Behaviour in Diodes Inc. Power Switch Parts

A new customer came to me with their product that was having problems during testing at another laboratory. There were radiated emissions problems (mostly solved with improvements to the ground plane scheme on the PCB) and a very interesting (and challenging) ESD problem which I’ll cover in this blog.

Here was the device exhibiting the problem, a Diodes Inc AP22802AW5-7 “power distribution load switch”. Input VBAT from a stick of AA batteries, SW_PWR from a rotary switch, and output to the rest of the circuit.

Problem outline

The ESD problem was described by the customer:

The EUT stopped working when 4kV contact discharges were applied on discharge point shown. I removed the batteries and I put them [in] again and there was not any response from the sample (no otuput and the green LED remained OFF).

[A second sample] was then tested with the same result, although this time not on the first discharge

Upon inspection both devices had failed due to the load switch (AP22802AW5-7Diodes), with one failing open and one failing short and both becoming very warm.

ESD diode placed on input and output of load switch (with no effect)

ESD diodes placed on all [discharge points] (with no effect)

ESD diode places on VCC close to pullup resistors for [discharge points] with no effect

First thing first was to get the product set up on the ESD table (with a bit of added blur to protect the innocent).

It was very easy to re-create the problem observed at the original test lab with the second contact discharge to the EUT exposed contact point causing the unit to shut down.

In each case, the power switch was failing low resistance from IN to GND. The initial theory was that the device was being damaged by the high voltage punching through the silicon layers leaving a conductive path.

 

Eliminate the possible

I made a series of experiments to determine the coupling path into the problematic device. Working on the principle that, because of the 15cm distance between discharge point and problem device, that conduction might have been the problem.

  • Capacitors on Vin and EN
  • plus disconnect EN line
  • plus ferrite beads and capacitors on Vin, Vout and EN
  • plus local TVS diodes on pins of device
  • plus ferrite beads in series with [EUT input] lines

Whilst none of these experiments were successful they certainly helped eliminate conduction as the coupling path.

Because of the very high frequency content of the ESD pulse, capacitive coupling is likely going to be the dominant coupling method. Whilst it could couple into the device directly, there was more opportunity for the pulse to couple into the traces connected to the device first. Filtering the inputs eliminates two coupling possibilities

 

Change of sample

The PCB was starting to get a bit tired from the repeated hot air SMT de-soldering and re-soldering so I swapped to another supplied sample. To be able to operate the unit out of the casing I swapped to a linear DC bench supply instead of the AA batteries.

This proved to be an interesting mode as it allowed me to kill the power quickly. The next set of experiments were in an attempt to reduce the effect of capacitive coupling to the problem device.

  • Improved ground stitching / connection
  • Changing supply voltage
  • Indirect HCP discharge – not to EUT but to the Horizontal Coupling Plane albeit with a vertical ESD gun to increase capacitive coupling to EUT.
  • Reduction of coupling into Vin terminal by removing components and copper
  • Addition of copper foil shield over the top of the device

 

Failure mode discovery

Setting the current limit on the DC supply to a fairly low value (about 20% higher than nominal current draw) was a good idea.

When applying the ESD strikes the supply went into foldback as the EUT power input went low resistance. I discovered that quickly turning off the power and then turning it back on effectively reset the failure mode of the device. This proved to be repeatable over several discharges: zap – foldback – power cycle – EUT OK.

What silicon component behaves like this? A thyristor.

This is a phenomena known as “latch up” where the parasitic thyristor structure present in the CMOS process fires due to over voltage… such as an ESD strike for instance!

Because the device is only small the power dissipation caused by the battery short circuit current is enough to “pop” the device through overheating.

 

Out of circuit testing

Whilst it doesn’t get used very often, my Sony Tektronix 370 curve tracer is perfect for testing components like this.

(not mine, picture From CAE Online)

Here’s the VI curve of an undamaged device. It’s a bipolar voltage between VIN and GND. On the left of centre is the standard forward biased body diode. On the right is the reverse biased breakdown of around 8V.

Now for a damaged device. In this case the current changes quickly for a small applied voltage and there is no non-linear characteristic. Essentially, a short circuit.

Turning up the maximum voltage that the curve tracer can apply and dialling down the series impedance allowed me to simulate the over voltage fault condition and create a latch up condition. This latch up wasn’t permanent due to the bipolar sine wave nature of the curve tracer applied voltage.

However turning up the voltage enough to cause excess power dissipation inside the device did result in the same failure mode using the curve tracer.

 

Summary

I have never encountered a device that is this unusually sensitive to ESD events before. A nearby 2kV discharge on the PCB top layer ground plane was enough to cause the latch up condition.

I noted in the report to the customer that this device had been changed to “not recommend for new designs” by Diodes Inc. I wonder if they identified this condition in the device and withdrew it for that reason.

The customer resolved the issue by replacing the device with a different part and we all lived happily ever after.

The end.

 

 

 

LVD Voltage Limits are RMS + Thoughts on Marginal Voltages

The LVD a.c. voltage limits are defined in terms of rms. From 2014/35/EU

This Directive shall apply to electrical equipment designed for use with a voltage rating of between 50 and 1 000 V for alternating current and between 75 and 1 500 V for direct current

So that’s 50Vrms and 1000Vrms.

 

Example

A customer was asking about a low current (sub 1mA) 40Vac rms source and if the LVD applied.

This voltage is less than the 50Vrms threshold mentioned above so would be technically exempt from the LVD. Unless of course the equipment contained a radio module in which case the RED makes the LVD applies with no lower voltage limit.

I think that there is still a risk that needs to be assessed here.

Just because you are exempt from the directive doesn’t mean you are exempt from making your product as safe as possible.

 

Looking at the main table from 62368-1 for categorising shock risk, 40Vrms/50Hz means it is an ES2 hazard. The voltage source would have to be under this limit for normal operation, abnormal operation (e.g. blocked vent, stalled motor, controls set incorrectly) and single fault (open/short circuit) conditions.

 

This means, even though the LVD is not strictly not applicable, it would be wise to put in a Basic Safeguard between the user and the exposed voltage.

Additional: The provisions of the General Product Safety Directive (2001/95/EC) would apply to any product falling outside of any specific safety standard. The Harmonised Standards for this Directive include EN 60065 and EN 60950-1. Since both of these have been superseded by EN 62368-1 it would be reasonable to use this standard instead.
Thanks to Charlie Blackham from Sulis Consultants for the tip.

This safeguard could be an enclosure, insulation, an interlock or barrier.

Instructions or PPE aren’t sufficient as they are considered supplementary safeguards.

 

But what about the current limits?

That’s just considering the voltage source purely from a voltage perspective. If it can’t drive enough current into a 2000 ohm load for more than 2 seconds to form a hazard then that might change the classification.

This current is measured using one of the appropriate networks from EN 60990 such as the one below

 

 

But I know what I’m doing…

The requirement for safeguards depends on if you classify the user as a normal person or an instructed person

Skilled person > instructed person > normal person

3.3.8.1 instructed person
person instructed or supervised by a skilled person as to energy sources and who can
responsibly use
equipment safeguards and precautionary safeguards with respect to those
energy sources

3.3.8.2
ordinary person
person who is neither a skilled person nor an instructed person

3.3.8.3
skilled person
person with relevant education or experience to enable him or her to identify hazards and to
take appropriate actions to reduce the risks of injury to themselves and others

The level of safeguard required between the user and the ES2 hazard is defined in EN 62368-1

For a normal person we must use a basic safeguard

But for an instructed person we may use a precautionary safeguard

A Precautionary safegard (defined in 0.5.5.3) could take the form of instructions or training, but the addition of warning stickers, PPE could also be considered part of this.

 

Summary

This is why I like EN 62368-1 over some of the older safety standards (I’m looking at you, 60950)

Rather than a prescriptive “thou shalt use 2.5mm clearance or be smote verily” it helps and guides you through all the steps into understanding why or how a requirement is derived.

Also the companion EN 62368-2 explanatory document contains even more background and context. I wouldn’t recommend applying -1 without having -2 to hand.

Stay SAFE kids.

 

By James Heilman, MD - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=34056919

Ventilator Projects and EMC Testing (EN 60601-1-2:2014)

Summary

If you haven’t already, check out part 1 of this blog Part 1: Rapidly Manufactured Ventilator (RMV) Projects and EMC Regulations

We’re going to take a look at the EMC requirements for RMVs, consider some of the risks posed by EMC and propose some methods of mitigating them.

Probably the biggest EMC risks are Radiated RF Immunity and ESD due to their higher than normal test levels.

If you need any fast turnaround design support and testing services for your Rapidly Manufactured Ventilator project then get in touch.

Background

As noted in the MHRA RMVS specification on page 24:

“EMC Testing (TBC): Must comply with IEC 60601-1-2:2014, Medical electrical equipment — Part 1-2: General requirements for basic safety and essential performance — Collateral Standard: Electromagnetic disturbances — Requirements and tests”

So lets take a look at a the EMC tests that might be required for a typical Rapidly Manufactured Ventilator project.

This is with the view of meeting the Essential Performance / Basic Safety requirements of EN 60601 whilst addressing the highest risk items first. This is prioritising speed of testing instead of performing a belt and braces, test everything approach that would be the common approach for Medical Devices.

Emissions

These ventilators are going to be used in a hospital / clinical care environment under medical supervised use and not in a home environment.

60601-1-2 classifies a hospital as a Class A emissions environment for Radiated and Conducted emissions. This means that less time needs to be spent fighting to get the emissions below Class B.

Risk items to radiated emissions could include any brushed DC pump motors as these are notoriously noisy. Ferrite cores may be required around motor cables to mitigate this noise.

Following the design guidelines further down this article for any PCBs is recommended and will greatly assist with reducing EMC radiated emissions.

Most RMVs will be using an off the shelf power supply already approved to EN 60601 for Safety and EMC. AC Power conducted emissions should therefore look after itself and won’t be a significant worry for testing.

For Harmonic Distortion and Flicker, there is an interesting note in EN 60601-1-2 in Annex A

“It is assumed that ME EQUIPMENT and ME SYSTEMS used in hospitals (and large clinics) are not connected to the PUBLIC MAINS NETWORK.”

If this is the case, then Harmonics and Flicker requirements and tests need not apply as these only relate to the public mains network.

Immunity

Overview

Most ventilator systems have no external electrical ports apart from the power supply. They are mostly self contained units. This greatly speeds up and simplifies the testing, and reduces the risk of problems with Signal Input / Signal Output Ports (SIP/SOP Ports in the standard, analogous to a Signal Port from other EMC standards).

Mains borne interference (EFT, Surge, Conducted RF) should be handled by the EN 60601 pre-approved power supply without issue. It will still need checking but ultimately the risk is low.

Dips and Interrupts and the hold up time of the power supply is something that would need considering at the Risk Analysis level to derive the correct immunity criteria for each of the individual tests.

If this needs improving then selecting a slightly larger power supply than nominally required could help. More likely, additional bulk decoupling on the main power rail (e.g. 1000uF) will help maintain the system DC voltage under these conditions.

Immunity Performance Criteria

Caveat: This section is me thinking aloud as I have no domain specific knowledge for Risk Management and Medical Devices. I’m trying to approach this from a common sense perspective to aid anyone working on a RMV.

The function of the EMC Immunity tests for Medical Devices is to ensure that the Essential Functions continue to operate and that Basic Safety condition is maintained.

Normally the immunity performance criteria would be based on the type of EM phenomena being simulated in the test. This is normally Criteria A for continuous phenomena (radiated or conducted RF immunity) or Criteria B for momentary phenomena (ESD, EFT, Surge, Dips/Interrupts). Criteria C only tends to crop up for longer duration power interruptions.

In the case of a Medical Device, maintaining the Essential Performance is the key parameter. If a momentary EM phenomena causes this to happen then this is a major problem.

Therefore immunity performance criteria must be considered for the key function of the device as well as the duration of the EM phenomena.

Based on this thought process, a sensible starting point for the immunity criteria is:

Assume criteria A (unaffected performance) for:

  • Key function of assisting patient breathing for all tests. This includes momentary EM phenomena tests = ESD, EFT, Surge, Dips/Interrupts.
  • Non-critical functions under continuous EM phenomena tests = Radiated and Conducted RF Immunity

Assume Criteria B for:

  • Key function performance for this means that there should be a function in the RVM firmware that remembers its last current operating state and settings and that it starts up in that state from a power cycle. This creates a requirement for programmable non-volatile memory (some kind of EEPROM) in the RVM.
  • All momentary EM phenomena tests for non-critical functions e.g. display readout may temporarily distort or flicker so long as it recovers

Assume Criteria C for:

  • Non-critical functions from momentary power loss e.g. screen/display readout or setting

Immunity Risks

There are two big risks to the immunity performance: Radiated RF Immunity and ESD.

Radiated RF Immunity

Test Requirements

The basic requirement for radiated RF immunity is a flat 3V/m from 80MHz to 2.7GHz. So far so good, this is a fairly easy test to meet.

Now the bad news. Table 9 gives a list of spot frequencies to be tested to simulate close range exposure to common wireless technology standards. The table is summarised here:

Frequency (MHz)ModulationTest Level (V/m)
38518 Hz pulse, 50%27
450FM +/- 5kHz dev.
1kHz sine
28
710, 745, 780217 Hz pulse, 50%9
810, 870, 930 18 Hz pulse, 50% 28
1720, 1845, 1970 217 Hz pulse, 50% 28
2450 217 Hz pulse, 50% 28
5240, 5500, 5785 217 Hz pulse, 50% 9

As you can see, this has testing up to 28V/m, a significantly higher field strength than 3V/m!

Risks to the EUT

This test loves to mess with analogue sensors. In the case of ventilators, the pressure sensors used frequently have an analogue output to a DAC on the CPU. This presents two risk areas:

  1. Demodulation of noise inside the pressure sensor amplifier. This takes the small transducer signals and amplifies it up to the output voltage. Noise demodulated here would cause the carrier to be superimposed on the pressure readings.
  2. The input of the ADC could be susceptible to noise picked up on the analogue voltage from the pressure sensor, even if the pressure sensor itself is unaffected. This will affect the readings.

Since the airflow and pressure sensors are a key component to the operation of the ventilator, these must be protected at all cost.

Design Recommendations

Design ideas to mitigate this interference include

  1. Keep traces/connection as short as possible between sensors and ADC
  2. If you can mount them all on the same circuit board then do so
  3. This circuit board will have one layer dedicated to a solid ground plane fill over the entire plane. All ground pins

    Check out my video presentation on PCB grounding and HF current flow.
  4. Cables = antennas that are good at receiving the interference. Minimise use of cables where possible.
  5. Figure out what your minimum bandwith requirements for airflow are and filter the signal appropriately. You probably won’t need to sample the airflow faster than 10kHz so put a low pass filter right next to the ADC input. Something like a 4k7 and a 1nF will give you a 3dB of 34kHz. This will reduce the risk of RF noise being demodulated by the ADC input.
  6. Decouple the supply lines to the pressure sensor well
  7. Add a small filter to the pressure sensor input, perhaps another RC filter as shown above. This will help prevent the pressure sensor from being affected by the test.
  8. It is possible that the pressure sensor will be directly affected by the radiated noise picked up by the sensor body itself and not by the traces. It would be prudent to provide a PCB footprint for a shielding can near the sensor. I have seen this effect on gas sensors in the past.

Risk Analysis

Assuming that the advice above is followed, the risk to the EUT is manageable.

One of the interesting features of Radiated RF Immunity testing is that of the Problem Band where most issues occur.

radiated rf immunity susceptibility characteristics

Most of the time, the problem band is in the 100MHz to 300MHz area (I’ll cover this in more detail in a future article). Cables tend to be the best antennae at these frequencies and, hopefully, our ventilator only has one cable of interest – the AC power cable. This has plenty of filtering for conducted emissions reduction which should handle this noise.

Probably the two biggest problem frequencies from the spot frequencies above are going to be 385 MHz and 450 MHz.

Then we are into the realms of direct pickup on internal signal cables and PCB traces at higher frequencies. If we’ve laid out our PCB well as highlighted above (short analogue traces, filtering, good ground plane, shielding provision) then this will help mitigate our risks.

ESD

Overview

The levels of ESD testing are almost twice that of the regular EMC standards with a requirement for 8kV contact and 15kV air discharges.

ESD is very good at upsetting digital systems and it has a particular fondness for edge triggered pins e.g. reset lines and interrupts.

Design Recommendations

If the reset line for the CPU controlling the RVM is shared with other digital circuit blocks or supervisory controllers then an RC low pass filter at the input to the CPU is highly recommended. This helps prevents unwanted resets.

Checking can be implemented in the Interrupt Service Routine to ensure that an interrupt condition actually exists, effectively de-bouncing the input.

Thankfully the Ingress Protection requirements for the RVM of IP22 and the requirement to provide flat, easily cleanable surfaces will probably dictate the use of some kind sealed membrane keyswitch panel. These have good ESD immunity as no direct contact discharge can take place on an switch where the plastic covering remains in place.

Whatever user interface technology the RVM employs, this will be a key risk area for ESD. If this is on a separate PCB to the main controller, all interfaces will need some kind of filtering. A small capacitor to ground on each of the lines that goes to the keypad would be a good idea. 0603, 100pF usually works well here.

Lastly on the mechanical design, keeping the electronics well away from the enclosure seams will also reduce the risks of creepage of any discharge into the circuit board.

Summary Test Plan

Emissions

  • Radiated Emissions, Class A, 30MHz to 1GHz (EN 55011)
  • Mains Conducted Emissions, Class A, 150kHz to 30MHz (EN 55011)

Immunity

Text in bold is highlighted as a risk item.

  • ESD, (EN 61000-4-2), 8kV contact, 2/4/8/15kV air. Test to connectors as well.
  • Radiated RF Immunity (EN 61000-4-3)
    • 80MHz to 2.7GHz @ 3V/m
    • Various spot frequencies at up to 27V/m
  • EFT (EN 61000-4-4), AC Mains Port, 2kV
  • Surge (EN 61000-4-5), AC Mains Port, 1kV line-to-line, 2kV line-to-ground
  • Conducted RF Immunity (EN 61000-4-6), AC Mains Port, 3V/m (6V/m in ISM bands)
  • Dips and Interrupts (EN 61000-4-11), AC Mains Port, various

Conclusions

Not only has this article identified key EMC risks to Rapidly Manufactured Ventilators but also provided some design guidelines to dealing with the problems that might arise.

Some of the guidelines within might be useful to anyone designing a Medical Device. We haven’t covered the requirements for Patient Coupled Ports or SIP/SOP ports from an EMC perspective as they aren’t of too critical a concern for an RVM.

We can see how looking at the standard and pulling out the required tests can help us understand the risks involved in the design.

Experience of knowing how the tests will typically affect the EUT is the key to unlocking good design practices. In my case, this comes from having worked on many designs with problems and the learning that comes from fixing the issues that crop up.

Remember EMC test success comes from good EMC design. For a time critical RVM there is one chance to get it right – no do-overs!

I hope you found this article useful. See you when all this has calmed down.
All the best,
James.

By James Heilman, MD - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=34056919

Ventilator Projects and EMC Regulations (UK)

SUMMARY:

1. CE marking probably won’t be necessary for UK for temporary ventilators
2. Still need to apply to MHRA for permission to use in clinical setting
3. This will likely involve the supply of test data to MHRA
4. The requirement for EMC testing is currently To Be Confirmed
5. U3C will give any ventilator design a pro bono EMC design review

In the current Covid-19 pandemic there are many project teams around the world coming up with designs for ventilators. The potential is for many such devices to be required.

The problem that this article identifies is that for normal medical devices, the length of time taken to get products approved is defined in terms of months. This is especially true for ventilators which are, according to several sources, a Class IIb device requiring a robust quality system and Notified Body approval.

The current requirement is for devices to be delivered within weeks.

Recognising this, the MHRA in the UK have published a “Specification for ventilators to be used in UK hospitals during the coronavirus (COVID-19) outbreak.”

Interesting points from this document in relation to the Electromagnetic Compatibility (EMC) characteristics are:

Page 10: “2. It is not anticipated that devices will be CE marked and approval by the MHRA will be through the “Exceptional use of non-CE marked medical devices” route (https://www.gov.uk/guidance/exceptional-use-of-non-ce-marked-medical-devices)”

The procedure covered under the “Exceptional use of non-CE marked medical devices” involves applying to the MHRA directly for a pass to supply this product for use without CE marking. This request will have to include data that shows compliance with the test criteria in Appendix B of the MHRA specification.

Page 11:3. When the current emergency has passed these devices will NOT be usable for routine care unless they have been CE marked through the Medical Device Regulations. The device must display a prominent indelible label to this effect.

Page 24: “EMC Testing (TBC): Must comply with IEC 60601-1-2:2014, Medical electrical equipment — Part 1-2: General requirements for basic safety and essential performance — Collateral Standard: Electromagnetic disturbances — Requirements and tests”

Note that the requirement for EMC testing remains TBC = To Be Confirmed. I strongly feel that at least some testing should take place, but functionality of the ventilator has to come first.

Next article will be a breakdown of the EMC test requirements called up in EN 60601-1-2:2014. I’ll also highlight some risk areas that designers of these ventilators will need to to bear in mind.

If anyone has any need for pro bono EMC design review services for ventilator projects or needs some EMC testing turning around quickly then get in touch.

hello@unit3compliance.co.uk

I hope you are all keeping well during these interesting times.

James

Networking Equipment – EMC Radiated Emissions Problem Solving

I had an email from a customer that I’m working on some design consultancy work with, saying that one of their prototype products was having some radiated emissions problems at an accredited lab. Could I take a look?

Absolutely, EMC radiated emissions problem solving is my favourite part of the job! Ironically, it is usually the customers least favourite part!

Thankfully I had a slot free the next week so they bundled their kit into the car for the long drive “Up North” from their base in the South West of the UK.

After some tinkering, the equipment was set up in the chamber for some radiated emissions work. The first scan confirmed the problem levels and frequencies that had been observed at the other laboratory.

The problem areas from their last scan were at 35MHz, 80-90MHz and a broad band between 150MHz and 220MHz.

 

System Overview

The system was housed inside a nice aluminium case that was being used for CPU heatsinking and environmental protection as well as EMC shielding. A rough diagram of the internals shows a main PCB with a large CPU / memory block in the centre and a variety of cables leaving the PCB and the casing.

The main power cable housing also had two debug connections inside the same housing that weren’t being used in the field but were available for updating software and such like.

rwns overview diagram

As is so often the case, this product was in it’s final stages of the development life cycle, meaning that no major design changes were possible. These EMC problems would have to be resolved using easy to fit additional components. Thankfully I have plenty of things in stock to try out.

 

Emissions Analysis

There are two important characteristics about these emissions that show us where to look

  1. They are predominantly broadband, an indication of analogue noise e.g. DC/DC converter / power supply. Sometimes this broadband noise is generated by digital switching but this can be less common.
  2. They are all low in frequency, where large or long structures are the most efficient antennae. This usually means cables.

So power noise and cables…. hmmm…. any good ideas?

 

OK Kids, Let’s Take a Look at the Cables.

In a very sensible move by the designer, both the DC power and Ethernet cables had some common mode filtering on the PCB.

Ethernet magnetics have common mode chokes built into the transformer stack which reduces the noise emitted and increases the susceptibility performance of Ethernet despite the often unshielded twisted pair cables used.

The caveat is that once the cables have left the magnetics that they must be protected from other interference sources. Noise coupling on to these lines is going to be heading straight out of the enclosure using these lines as the antenna. Similarly, if common mode noise gets onto the centre-tap of the output side of the magnetics then this can also cause similar issues.

I have experienced system noise coupling on internally routed Ethernet cables before and it nearly always results in lots of low frequency emissions.

The power cable had a small surface mount Murata filter in place with excellent attenuation at the frequencies of interest.

murata filter characteristics and equivalent circuit

Both the Ethernet and power cables pass through the shielded enclosure with no connection or filtering to the case. In bypassing the quite nice Faraday cage of the enclosure, any noise current on these lines will inevitably appear as radiated emissions and be picked up by the receive antenna..

Now to find out some more info.

 

Radiated Emissions Experiments

First, unplugging the Ethernet cable dropped the emissions significantly from 30MHz to 120MHz.

Secondly, some messing around with ferrite cores on the power cable reduced the 150MHz to 220MHz hump down to sensible levels.

This left a single peak at 270MHz that was traced to noise using the coaxial RF cables to the antenna to radiate.

Lets look at each of the points in a bit more detail:

 

Ethernet

The only practical method of dealing with the Ethernet emissions was to change the bulkhead connector to a metallic screened version and the external cable to a SSTP (Screened Shielded Twisted Pair) type of cable. No exciting analysis here I’m afraid.

 

Details of the Power Cable Noise Coupling

The most interesting coupling mechanism was happening inside the un-screened bulkhead power connector. Thanks to the power filter on the PCB, there was very little noise being conducted back down the cable from this line. However, the debug connections to the CPU are picking up all kinds of noise and carrying that noise to the connector.

rwns cable coupling close up

Disconnecting and bundling the debug cables near the connector cuts the radiated emissions down to next to nothing.

What’s most interesting is that the capacitive coupling region between the power cable and the internal debug cables is so small. The connector is only 20mm long and the cables run parallel with each other for barely any distance. And yet there is enough noise current being coupled onto these lines that it causes a radiated emissions problem.

 

Details of the RF Antennae Noise Coupling

By the time that all of the cables had been filtered or removed, there remained just one emission at 270MHz that was failing the Class B limit. An investigation with RF current probes showed a lack of noise on the main output cables listed above, even when they were screened or filtered appropriately.

A wander round the enclosure with an electric near field probe and spectrum analyser showed a spike in emissions near the RF antenna housing on the side of the EUT.

 

rwns antenna spurious

Checking the antenna feed cables showed them connected to the PCB pretty centrally. Disconnecting the coaxial cables from their mating halves dropped the emissions down to the noise floor.

Even though the noise isn’t in-band for the antennae themselves, they still perform well enough to radiate the noise and cause an emissions problem.

 

Summary of Fixes Applied

The below diagram shows the fixes applied to the EUT to achieve a Class B pass.

rwns applied modifications

Firstly, a fully screened metal bulkhead Ethernet connector was chosen for use with a shielded cable. This isn’t ideal from the installation point of view but is ultimately unavoidable without more significant modifications to the EUT.

Secondly, a Wurth ferrite was equipped around all three of the cables connected to the power bulkhead connector. As detailed above, it is necessary to put the ferrite around all three cables and not just the power to reduce the noise entering the capacitive coupling region around the connector.

Thirdly, a small ferrite was placed around each of the UFL cables at the point at which the antenna cables left the housing. This is a fairly common modification for radiated emissions, one I’ve employed several times before, and there are numerous suppliers of ferrites of various lengths with just the right inside diameter for the type of thin coaxial cable used with UFL connectors.

 

Results

Closing Thoughts

Any time your cable passes through a shielded enclosure with no RF termination at that point, you can pretty much guarantee its going to need some filtering.

Nothing particularly in depth in this analysis of the EUT, but I did find the coupling in and around the power connector particularly interesting.

At the end of the day, the best outcome was a happier customer with a path forward for their product.