Posts

Off The Shelf and Non-Compliant Power Supplies (from Amazon)

A customer had purchased some power supplies from Amazon UK to get started with the development on their product. And why not? There are lots of cheap products available and everyone has a budget to meet. The chances are that they’ll get damaged, lost or broken anyway.

They were happy with the (perceived) quality of the PSU so approached the manufacturer directly for bulk pricing for volume production. However, the Amazon sample made it’s way to Unit 3 Compliance for EMC pre-compliance testing where the fun began…

infographic comparing two power supplies

Externally, the only way to tell the difference between the compliant and non-compliant versions is a slight difference in the length of the barrel connector and a slightly different shape of strain relief grommet.

These devices are being marketed as the same device on the outside and yet are completely different on the inside!

I’ve not been able to subsequently find this exact power supply on Amazon but there are similar looking variants still available.

 

A Real Problem

Crucially, it’s not just EMC that is being sacrificed. This “race to the bottom” of extracting every last penny from products has more serious consequences.

More dangerously for consumers, electrical safety is also being compromised as shown in this study from Electrical Safety First on Apple chargers.

At a previous employer, an inspection was performed on 50 power supplies (again, bought from Amazon) that one of the project teams had purchased for powering various development platforms within the company. This revealed some serious safety problems (creepage and clearance) resulting in the entire batch being quarantined and scrapped for recycling.

Another aspect to consider – if the manufacturer has two different, almost indistinguishable products then how does your supply chain guarantee that you will receive the correct one? What is to stop the manufacturer from swapping out the more expensive compliant power supply halfway through production?

The principle of caveat emptor still applies. Disingenuous product markings are being used to falsely indicate compliance.

 

What To Do?

The obvious way round this is only to buy small quantity power supplies from trusted suppliers. I know from working with other customers that suppliers like RS and Farnell / Element 14 take compliance seriously. Buying from these sources is more expensive financially but what price do you put on your own safety?

If you are relying on buying a pre-approved power supply always ask for the EMC and safety test reports and the Declaration of Conformity. A supplier who cannot readily supply these readily should be disregarded.

Compare the details in the reports with the physical sample in front of you. Especially for safety reports, photos of the unit are generally included, inside and out. Look for any differences between the two.

Differences in EMC performance are not obvious. The only way to be sure of the quoted performance is to perform some quick tests, conducted and radiated emissions being the two main ones.

 

How We Can Help.

Here at Unit 3 Compliance we can give you some peace of mind that your power supply isn’t going to cause you any issues. Some of the things we do include:

  • Provide full EMC testing for all off the shelf products
  • Electrical safety analysis and testing
  • Help you understand the compromises and
  • We can review test reports and compare to physical samples with an experienced eye
  • Every incoming customer power supply is given a HiPot test as standard to help catch any problems

Please get in touch to reduce your stress levels.

 

Busy, and a Birthday

It has been a very busy few months at Unit 3 Compliance; it feels like the chamber turntable hasn’t stopped spinning. There has been a wide range of products through the door from prosthetics to video wall controllers, from high spec IoT products to motion sensors, from lighting power supplies to RF amplifiers. I really love the variety of work!

I’ve also had some safety assessment work to carry out on which is always interesting. Disassembling mains transformers to measure the creepage distances inside is fascinating, getting out the angle grinder to hack the laminations apart just adds to the fun.

There have also been a fair amount of design reviews and general consulting work in between. To be able to work with customers right at the start of the project is invaluable as it sets them on the right path without having to find problems further down the line.

I’ve found lots of interesting nuggets of EMC information during this process that I’m looking forward to sharing with you in some future blog posts once I get time to sit down and write them up.

I managed to escape down to Lincoln to speak at the Open Source Hardware User Group oshcamp18 meetup on the subject of EMC testing. The delegates came up with lots of good questions at the end and the audience participation (see below slide) of the talk went down well. Higher! Lower!

play your compliance cards right!

Good to see reconnect with some old contacts and make some new ones. The other talks were very interesting also, lots of good work going on in the open source hardware field at the moment.

Lastly, and it snuck past without me spotting it, Unit 3 Compliance had it’s first birthday. It’s been a whole year since I got the keys to the unit. In that time, and with lots of help, it has gone from this:

the empty unit

Via this:

To this:

And finally this:

 

Here’s to the next 20 years of compliance, I hope to see you on the way.

 

 

Case Study: AC Mains Input EMC and Safety Troubleshooting

Many of the customers I deal with are technically savvy and extremely good at designing innovative and clever devices. I’m always learning something new every time I get a different product through the door. Unfortunately it isn’t practical or possible to be good at everything and EMC expertise, especially when it comes to fault finding and problem solving, can be hard to come by. This is where I come in.

I’ve been helping a good customer on a product that they’ve been working with that had some EMC troubles on a prototype design. It had originally been taken to a different test lab where they had performed a mains conducted emissions measurement showing a clear failure at low frequencies. There were a couple of other hard copy scans supplied where a capacitor value had been adjusted to try and improve the emissions but with no effect.

In need of some expertise, they got in touch.

Mains Conducted Emissions Testing

I received the product and quickly set it up in our screened room to perform some EN 55014-1 conducted emissions measurements. Below you can see the first scan result, showing a failure of up to 10dB on the Quasi Peak detector. There’s clearly some room for improvement so let’s analyse the problem and see what we can do.

mains conducted emissions - before

Our starting point for the improvement work

Lower frequency mains conducted emissions are not uncommon and are usually caused by differential mode voltage noise. This is generated by current flowing through the impedance presented by the primary side bulk decoupling and switching circuit. The switching frequencies of the power supply controller are usually in the 30 kHz to 250 kHz range putting it (and it’s harmonics) right in this lower frequency (sub 1MHz) range for this test.

Improving differential mode noise can be done in a number of ways. Removing the noise at source is the approach I advocate, in this case this can be achieved by reducing the impedance of the rectified mains bulk decoupling capacitor. A review of the BOM showed that the units had been built with some general purpose electrolytic capacitors with a relatively high impedance. So the first thing that I did was to swap out these parts for ones from the Nichicon PW series of low impedance electrolytic capacitors.

after fitting low impedance bulk decoupling

Changing the electrolytics to a low impedance variety

The result: a big improvement on the QP measurements, bringing some of them down by around 10dB. The improvement on the Average detector readings was less pronounced, especially around 550 kHz where only a 3dB improvement was registered. It is likely that the HF impedance of the decoupling capacitor is still a problem. One option is to apply a suitably rated high frequency decoupling capacitor in parallel with the bulk decoupling capacitor. The other option is to improve the filtering on the AC mains input to prevent the noise from escaping back down the line.

Filtering for differential mode noise can be provided in several ways. The most common method is to make an LC filter from the leakage inductance of a common mode choke paired with a Class X safety capacitor between Live and Neutral. The leakage inductance is in the tens of micro-Henries whereas the common mode inductance is often a couple of magnitudes larger up in the tens of milli-Henries. Simplistically (there are other effects to consider) a 10uH leakage inductance paired with a 470nF capacitor will roll off frequencies above 100 kHz. Well, let’s try that!

now with added class X cap

Now with an additional 470nF Class X capacitor soldered across the mains input terminals

Performance is improved by around 5dB across a wide range of frequencies; indeed the improvement can be seen up to 15 MHz. This leaves a margin of around 2dB to the average limit line which is perhaps a bit close for comfort and I would generally recommend looking at a little more filtering to bring this down a bit further to allow for variations in production and tolerance of components. Options for further improvements could include a second Class X capacitor to form a pi filter but because of the low impedance of the differential mode noise this approach might not be as effective. Adding some inductance to form an LC filter with the bulk decoupling capacitor is another approach.

However this proved the case to the customer for a PCB redesign to make space for the larger bulk decoupling capacitors and at least one Class X capacitor.

Surge and Safety

Following on from this work, at the customers request, I carried out a full suite of EMC tests on the product to EN 55014-1 (emissions) and 55014-2 (immunity). One thing that I noticed was the sound of an electrical breakdown during the application of a differential mode surge test. Taking off the outer casing, I managed to catch the below arc on camera during a 1kV surge event.

Arcing caught on camera

Snap, crackle and pop.

The arc appeared around the resistor; desoldering and removing it from the PCB showed a couple of points where there was arcing between the resistor body and the trace running underneath it.

Arcind damage to the PCb to surface

Arcing evidence on the PCB

This problem has occurred because the resistor R1 is in series with the Live phase and the trace underneath is connected to the Neutral phase. When mounted flush to the PCB normally, the resistor has only its outer insulation between live and neutral. Reviewing the relevant electrical safety standard for the product requires a minimum clearance (air gap) for basic and functional insulation is 1.5mm. This can be achieved by standing the resistor up on spacers to keep it away from the PCB but then it starts to approach VDR1 and Q4 meaning a considered manufacturing approach is required. This was another incentive for redesigning the PCB.

The take-away lesson from this finding is to consider the Z axis / third dimension when reviewing a PCB as it can be easy to see things purely in two dimensions!

I hope you found this case study useful and that it has given you some tools with which you can improve your designs.

If you need some EMC fault finding expertise then get in touch: I’d be happy to help and I love a good challenge!