Posts

Do I need to EMC test a pre-approved power supply? – EMC Explained

One of the most common questions we get asked when we send an EMC Test Plan / quotation to our customers is along the lines of:

 

“Our equipment is powered from a pre-approved CE marked power supply so we don’t need to do any AC mains EMC testing… right?”

 

If a power supply has already been EMC tested (if it has a CE or UKCA mark you would hope that this was the case) then it is a fair question – why should we retest it?

Adding AC mains specific tests into the EMC Test Plan adds time and therefore cost, something that some of our customers would like to avoid. For smaller businesses, the cost of assessment for EMC might be one of the largest external costs incurred on a project.

The main assumption driving this question is that EMC emissions – the noise that is coming out of the power supply and either back onto the AC mains or radiated from the power supply – is the only EMC problem we have to worry about. It’s the main one, but not the only one.

The pre-approved power supply will have been tested for immunity, but only the immunity performance of the power supply itself, not the equipment that it is powering.

Some noise will get through the power supply and into the equipment being powered. How does your product respond to this noise?

Also, how low are the AC mains conducted emissions from the power supply? Have you seen a test report? How reputable is the vendor?

Testing is the most reliable way to find out.

 

Our Recommendations

We generally recommend to our customers that they perform all of the applicable tests to the product.

(What, a test lab recommending testing? I’m shocked!).

Firstly, the tests are called up in the EMC standards, and for CE/UKCA marking, testing to a Harmonised Standard gets you a “Presumption of Conformity” to the requirements of the Directives – a pass without any further Risk Assessment or justification on your part.

Deciding not to perform the testing puts the responsibility on you to assess the remaining EMC risks. If you needed us to do this assessment for you or advise on it, the cost of a few hours of consultancy time would be equivalent to just doing the tests in the first place.

Secondly, EMC performance is often dictated by parasitic capacitances and inductances, component values that are not on the datasheet or intentionally designed into the product. Even knowing their magnitude does not give a good understanding of how they will interact. Testing allows us to measure their interaction under standardized conditions.

 

 

Risk Assessment Factors

As discussed above, our recommendation is always to perform testing on applicable ports, the AC mains port included.

If you are worried about costs or time taken for testing, then you might decide to omit some of the specific tests. The below table outlines some of the factors you may wish to consider when making this decision.

The more items that apply from the Risk Increasing Factors column, the less strong your argument becomes for not carrying out testing.

 

Risk Reducing Factors Risk Increasing Factors
Class II power supply (un-earthed)

 

Class I power supply (earthed)

Especially if the DC negative of the power supply output is connected to Protective Earth in the system.

Power supply comes from reputable vendor (e.g. Meanwell, XP Power, Recom, Traco, TDK Lambda, Puls, etc) Power supply comes from cheap or from far east supplier
Power supply external to product Power supply internal to product
No analogue or sensitive circuitry Analogue circuitry e.g. audio, 0-10V I/O, 4-20mA I/O

Sensitive, low level signals e.g. thermocouple, RTD

No other long (>3m) cables connected to equipment One or more long (>3m) cables connected to equipment
Main use in Basic (residential, commercial) EM environment Flexible use, could be used in Light Industrial or Industrial EM environments

 

If you are at all unsure then you should test the AC mains port with your intended production power supply.

For the ultimate in performance, or if the equipment is for flexible use (could be powered from an AC/DC supply or from a distributed DC power supply) then we would recommend treating the DC power input to your product as a signal port with a length greater than 3m.

This would then call up Conducted RF Immunity (EN 61000-4-6) and Electrical Fast Transient (EFT, EN 61000-4-4) testing to the power port at the appropriate levels for the end EM environment (e.g. Basic or Industrial)

One step further would be to apply line-to-line and line-to-earth surges to the DC input, assuming that the design already contains a transient surge voltage suppressing element like a TVS diode or an MOV.

Let’s take a look at some of the technical justification behind the selection of these items.

 

AC Mains Port vs DC Power Port

If you typically derive your equipment power from an AC mains power supply, then it is unlikely that you will fall under the DC Power Port classification.

The term DC Power Port in EMC terms means a very specific classification of port. We discuss this in some length in this article.

 

Power supplies do not always meet the regulations

A scenario that we have experienced on several occasions: the power supplies that end up with our customers or in our test lab are not the same as the ones in the manufacturer supplied EMC test report.

 

Another customer had similar problems on  power supply that they had received samples of in that the EMC performance varied wildly. In this case the clue was that the weight of the two samples was significantly different.

 

 

These power supplies were almost identical on the outside but significantly different on the inside. Same manufacturer and model number, different components. Imagine the conversation:

“I’d like to order some HM-A132 power supplies please”

“Certainly sir, which ones?”

“Erm…”

 

This is mostly related to cheaper power supplies sourced from China. We often see significantly different results to those shown in the manufacturer test report.

The worrying thing is if changes like this are being made on the basis of EMC, what changes are being made that affect Electrical Safety that are going unchecked? We can check that for you as well.

 

Cable Routing

If your power supply is integrated into your equipment then there is the possibility of noise on the AC mains cable coupling onto other nearby cables.

It is also possible for noise to couple (both to and from) components connected to the AC mains and internal system components. This could be an emissions (noise getting out) or an immunity (noise getting in) risk.

 

This is particularly likely if you are using slotted trunking and mixing AC mains cabling in with other cables.

 

 

 

This is less important for an external power supply like a laptop type charger or a plug top power supply as the AC mains cable remains outside of the equipment enclosure.

 

 

Power Supply Common Mode Impedance

Electrical noise inevitably gets coupled onto the AC mains bus. Normally this noise is coupled onto the AC mains Common Mode. This means all the lines together in relation to a high frequency “ground” reference plane.

The noise current through the power supply and equipment will flow something like this:

The noise reaching the equipment will have been attenuated by the Common Mode impedance of the power supply and the currents diverted through the parasitic capacitance of the power supply relative to the HF ground reference plane used in the tests.

Crucially, some noise still gets through to the power supply and will flow through the product. The magnitude of this current can be estimated or measured but relies on electrical parameters that are not on the power supply datasheet.

It is this noise current that we are interested in. How does it affect your product? The only way to find out is to perform testing.

 

Class I vs Class II Power Supply CM Impedance

The construction of a typical switch mode AC/DC power supply is broadly similar across a wide range of topologies. One of the main EMC variations results from if the power supply is Class I (earthed) or Class II (unearthed).

 

Class II

A Class II power supply relies on Double or Reinforced insulation between Live parts and user accessible secondary low voltage parts for Electrical Safety. There is no connection to Protective Earth. This kind of power supply is usually identifiable by:

  • the square-in-a-square double insulation symbol (IEC 60417 symbol # 5172)
  • a plastic earth pin on a UK mains plug (technical name is an ISOD or Insulated Shutter Opening Device)
  • An IEC C8 “figure-8” AC mains inlet socket with just two pins

 

Looking at the typical internal structure of a Class II AC/DC SMPS we can see that the components providing Common Mode noise attenuation are

  • the inductive common mode filter (Lcm)
  • the components across the safety isolation barrier, transformer Tx and class Y capacitor Cy

The value of parasitic parallel capacitance of the choke or transformer (or wanted series capacitance of Cy) will reduce the impedance ( Xc = 1 / [ 2 * pi * f * C ] ) and allow more noise current to flow at higher frequencies.

This capacitance is usually a low value to prevent too high a touch / leakage current to flow which would compromise Electrical Safety.

However, at EMC frequencies of MHz and higher this presents a much lower impedance allowing noise currents to flow through the cable.

 

block diagram of a class II power supply showing EMC immunity noise current through the power supply

 

Because current always flows in a loop, and because current always returns to the source, to close this common mode current loop we need to have return currents flowing. We usually think of these coupling capacitively onto a nearby metallic element like a nearby metal structure.

In the test lab we simulate this with a nearby metal plate but in real life this could take a number of forms (building steelwork, conductive cable trays, other wiring).

 

 

Class I (Or Class II with Functional Earth) Power Supplies

With a Class I power supply, the Protective Earth is connected to accessible metalwork for Electrical Safety reasons (prevention of electric shock). Basic insulation (or higher) is required between the live parts and user accessible secondary parts.

Possibly the protective Earth is also connected to DC negative somewhere in the system as well.

A Class II with Functional Earth power supply is similar from an EMC point of view but very different from an Electrical Safety point of view. In this case, the Earth is connected for functional reasons (reducing noise or EMC emissions) but the power supply still relies on Double or Reinforced insulation for safety.

This isn’t a very common power supply topology choice, so I was surprised to see it marked on my laptop charger power supply.

 

 

In both cases, when we apply common mode noise to the AC mains input (L+N+E) then the Protective Earth conductor allows the noise to bypass the common mode impedance of the power supply. It is for this reason that we view the use of a Class I earthed power supply as a higher EMC risk for immunity reasons.

 

block diagram of a class I power supply showing EMC immunity noise current through the power supply

 

 

How this noise couples into the rest of the equipment, its magnitude, and how it affects it depends massively on the construction of the equipment. Again, testing is the best way to determine this.

 

Conclusion

Power supplies and the equipment they power are not perfect and can have varying EMC performance depending on how you connect them and how the equipment is designed.

It isn’t always easy to estimate how likely EMC issues are, even for experienced engineers and problem like us at Unit 3 Compliance. It is for this reason that we would always recommend testing to characterize the unknown EMC performance.

If you do decide to omit some testing, then the Risk Reducing or Increasing Factors above should help with that decision.

Again, we hope that this guide was useful to you in some way. Get in touch with us if you have any thoughts, questions, observations, or (obviously) a need for EMC or Electrical Safety testing.

All the best!

 

 

 

sketch showing dc power distributed around a building on busbars to a vriety of loads, and with a battery bank. There is an AC/DC charger for the batteries.

What is a DC Power Port? – EMC Explained

Everyone knows what a DC power port is, right? It’s this…

sketch showing an ac/dc adaptor and a piece of equipment with a dc power input - this is classified as a signal port for emc purposes

It’s got DC power on it, and it is a port on the equipment. DC. Power. Port.

Not in the context of EMC I’m afraid. Despite the similar name, the EMC definition for a DC Power Port (from the IEC / EN standards) is very different.

The DC Power Port is unfortunately mis-named. A better term would be “DC Mains Port” to indicate how similar it is in construction and EMC requirements to its counterpart “AC Mains Port”.

In this guide we will refer to it in this guide as a DC power/mains port and look at:

  • The EMC definition of a “DC Power Port”
  • The EMC implications of classifying a port as a “DC Power Port”
  • Examples of a DC Power/Mains Port
  • Examples of NOT a DC Power/Mains Port

Any port that doesn’t meet ALL of the definitions of a DC Power Port is just classed as a Signal Port, albeit one that happens to carry DC power.

Those key parameters are:

Criteria Met?
Local supply in a site / building / infrastructure? ???
Flexible use by different types of equipment? ???
Supply independent from AC mains? ???

 

Definition

The definitions in the Generic EMC standards of EN 61000-6-1 (immunity) and EN 61000-6-3 (emissions) lays out what a DC Power/Mains Port is:

 

EN 61000-6-3:2007+A1:2011, Clause 3.8

“d.c. power network

local electricity supply network in the infrastructure of a certain site or building intended for flexible use by one or more different types of equipment and guaranteeing continuous power supply independently from the conditions of the public mains network

NOTE Connection to a remote local battery is not regarded as a DC power network, if such a link comprises only power supply for a single piece of equipment.”

 

Let’s break out the key terms to understand the definition:

 

“…local electricity supply network in the infrastructure of a certain site or building…”

 

This suggests something wiring that is built into or spreads around a large area. A good example is the way that AC mains wiring is distributed around a building. Imagine this carrying DC instead of AC.

Typical cable lengths are probably around 10m or longer. Longer cables means they can act as antennae for low frequencies (longer wavelength). So we need to be concerned with power supply noise from our equipment on these cables that could radiated from them.

Longer cables will also pick up lower frequency common mode disturbances (conducted RF and surge) and present a larger surface for capacitive coupling of fast transients (EFT).

 

“…for flexible use by one or more different types of equipment…”

 

Use of the word flexible implies ease of use and simple connection to this power distribution system. Perhaps a common power connector (similar in nature to an AC mains plug) is used, or an agreed connector standard.

A DC Power/Mains bus that requires tools and time to connect to (example a fire alarm wired with Mineral Insulated Copper Clad (MICC) or “pyro” cable) might not meet the definition of “flexible” in terms of “ease of connection”. Nevertheless it would be flexible in terms of connection of different types of equipment (sounders, detectors, etc.)

 

“…guaranteeing continuous power supply independently from the conditions of the public mains network…”

 

The likely scenarios here are:

  • A “DC UPS” system where a bank of batteries are kept topped up by an AC mains charger
  • A DC micro-grid system where power is generated from sources like solar power

 

Importantly

1) Any port that doesn’t meet ALL of these definitions is just classed as a Signal Port, albeit one that happens to carry DC power.

2) Any piece of equipment connecting to this DC power supply is classified as a “DC Power Port” regardless of whether it supplies or consumes the power

 

EMC Tests Required for a DC Mains/Power Port

The classification of a port as a DC Power/Mains Port invites extra EMC testing to be applied.

 

Port Length Conducted

Emissions

EN 61000-4-4

EFT

EN 61000-4-6

Conducted RF

EN 61000-4-5

Surge

DC mains/power Any YES YES YES YES
Signal (with DC) <3m NO NO NO NO
Signal (with DC) >3m and <30m NO YES YES NO
Signal (with DC) >30m NO YES YES YES

 

Almost inevitably, unless the equipment has been explicitly designed as a DC Mains/Power port, there will likely be EMC test failures.

Conducted emissions invariably fails the limits. Usually the first system component after the input power connector are a series of DC/DC buck converters to change the input voltage down to levels that are needed in the system.

Buck converters suffer from noisy input nodes because of the high dI/dt requirements of the switching transistors. This needs to be mitigated through good quality high frequency decoupling and can cause noise at 20MHz upwards. Common mode chokes in the DC input may be required to mitigate this noise.

At lower frequencies, there will be current draw from the supply at the switching frequency of the DC/DC and at it’s harmonics. Unless low impedance electrolytics and a differential mode filter (usually an inductor in the 2.2uH to 10uH range forming a pi-filter) are used, the emissions from the port will fail the average limits in the 150kHz to 1MHz range.

DC Mains/Power also requires the addition of the surge test in both line-to-line (DC+ to DC-) and line-to-earth (DC+ and DC- together relative to Earth) coupling modes.

The line-to-line surge of 500V (commercial/light industrial EM environments) or 1kV (industrial EM environments) with a 2 ohm source impedance is capable of damaging the first switching transistor it comes across on the DC line unless a Transient Voltage Suppressor (TVS) is employed between DC+ and DC-.

The line-to-earth test with a series impedance of 42 ohms (not the 12 ohms as used for the AC mains port test) tests the insulation of any isolated power supply and depends heavily on how (or indeed if) a Protective Earth connection is made within the system.

 

Examples of A DC Power/Mains Port

The sketch below tries to capture a typical DC Mains/Power port application

sketch showing dc power distributed around a building on busbars to a vriety of loads, and with a battery bank. There is an AC/DC charger for the batteries.

 

Criteria Met?
Local supply in site / building / infrastructure? Yes
Flexible use by different types of equipment? Yes
Supply independent from AC mains Yes

 

Specific examples include:

 

Telecoms

48V distribution around telecoms switching / data centers to power the equipment and to provide low levels of power to handsets in a Plain Ordinary Telephone Service (POTS)

 

Computing Data Centres

Large data centre and cloud computing providers like Facebook, Microsoft, Google, and Amazon are moving away from traditional DC>AC UPS systems and towards DC power distribution (380V, 200V, 48V depending on standards) to servers and other electrical loads.

The efficiency savings from not having to convert from AC power to DC in every load, multiplied by the number of loads makes for significant energy efficiency savings and heat reduction – some of the biggest costs for such facilities.

In addition, the DC to AC conversion loss in the UPS from battery DC voltage to AC voltage is removed. Instead there are just the batteries connected to the DC power bus.

 

Electricity Substations

Battery Tripping Units (BTU) are used to power monitoring and control equipment in electricity substations. The LV AC mains supply to the substation equipment (derived from the HV or MV feed) is considered to be an “auxiliary” supply. Control of the equipment is a requirement even if this power is not present. Common DC voltages are 220V, 110V, 48V, 36V, 24V.

 

DC Micro-Grid

Local power generation from renewable sources like Solar PV might be distributed around a power generating plant or a local area.

 

Emergency Lighting Central Battery Units

There is a requirement in Building Regulations to have fire exit emergency lighting powered separately so that in the event of a power cut the building occupants can find their way out of the building safely.

In smaller buildings this is usually achieved using emergency lighting with independent battery backup. However in larger buildings, a Central Battery Unit is used to provide power (and often control / monitoring functionality) to emergency lights spread throughout the structure.

The combination of data and DC power blurs the lines between a DC mains/power port and a Wired Network port. Both call up conducted emissions tests and similar levels of immunity.

 

Fire Alarm System

DC power is passed to different critical components of the fire alarm system (e.g. smoke / fire detectors, displays, alarm sounders) in a loop system from a central control panel.

sketch showing the connection of fire alarm components to a central panel - emc dc power port example 2

Criteria Met?
Local supply in site / building / infrastructure? Yes
Flexible use by different types of equipment? Yes [1]
Supply independent from AC mains Yes

 

[1] May be difficult to connect to and reconfigure but certainly flexible in terms of variety of equipment that could be connected

Interestingly, the EMC product family standard that deals with fire, security, and social alarms (EN 50130-4) only focuses on emissions from the AC mains port with no mention of DC power outputs. Since other standards address EMC requirements for DC Power Ports, including the Generic EN 61000-6-x series mentioned above, we have a path to bring in these requirements to the EMC Test Plan as part of the EMC Risk Assessment.

If using MICC / pyro cable, whilst the joints are required to be fireproof, there is no requirement for quality of termination for EMC purposes. Reliance on the shielding formed by the outside of the cable is contingent on a low impedance electrical termination which is not necessarily guaranteed.

 

 

 

Examples of NOT DC Power/Mains Ports

AC/DC Power Adaptor

sketch showing an ac/dc adaptor and a piece of equipment with a dc power input - this is classified as a signal port for emc purposes

Criteria Met?
Local supply in site / building / infrastructure? No
Flexible use by different types of equipment? No
Supply independent from AC mains No

 

In this event, the power bus with long cables is the AC mains interface that our AC/DC power supply plugs into (for non-UK readers: that is a UK AC mains plug).

The AC mains has all the EMC characteristics discussed above: long cables that can radiate noise (emissions) or have noise coupled onto them.

One question we get a lot is along the lines of:

“My product is powered from a pre-approved / CE marked power supply, so we don’t need to do any EMC testing on it… right?”

We’ve written a separate article to cover this interesting question.

 

DC power distribution around a typical DIN rail electrical cabinet

sketch showing typical dc power distribution around a DIN rail equipped electrical cabinet - again this would be classed as a signal port

Criteria Met?
Local supply in site / building / infrastructure? No
Flexible use by different types of equipment? Yes
Supply independent from AC mains No

 

In this example, the Load represents the equipment we are interested in. There is the probability of noise coupling onto the DC power cable from other equipment inside this cabinet. For example a large industrial machine would typically have contactors and large Variable Frequency Drives running close by.

If we think this could be the case then we would recommend testing Conducted RF immunity (61000-4-6) and EFT (61000-4-4) regardless of the anticipated maximum length of power supply cable.

This would form part of the EMC Risk Assessment for the equipment, an important part of the decision-making process for what EMC tests to apply. If you’ve not considered EMC Risk Assessments before then get in touch with us and we can help!

 

Power over Ethernet (PoE)

sketch showing an example power over ethernet distribution - these are classed as Wired Network Ports under EN 55032

 

Criteria Met?
Local supply in site / building / infrastructure? Yes
Flexible use by different types of equipment? Yes
Supply independent from AC mains No [1]

 

[1] Depends on the power source for the switch, it could come from a UPS for no-interruption requirements like security or network infrastructure.

Supplying DC power over an Ethernet cable is a thoroughly good idea. High speed data, enough power to run a simple device, all over cables approaching 100m in length? Sounds great!

Each port in a PoE switch will have power provided from a dedicated isolated power supply. This provides isolation (both in terms of EMC emissions and immunity) between different segments of the PoE network.

Despite the potentially long cables, it still doesn’t quite meet our criteria for a DC power port. However similar EMC requirements for a DC power port are called up by other standards:

  • EN 55032 (emissions of multimedia equipment) calls up a requirement for conducted emissions on wired network ports
  • IEEE 802.3 specifies a voltage isolation between Ethernet cabling and the circuit at each end of 1500Vac. This will often help (but not completely resolve) with the surge requirements
  • The surge test of EN 61000-4-5 is not applied line-to-line as the Ethernet lines are considered to be “symmetrical” in the language of this Basic standard. The tight coupling between the pairs in the cable and floating / isolated nature of the signaling means that coupling onto these cables generating line-to-line surges is considered unlikely. Only line-to-earth surges are applied.

 

Daisy chain of DC powered devices all running from the same bus

sketch showing a daisy chained series of DC powered loads - classified as a signal port

Criteria Met?
Local supply in site / building / infrastructure? No
Flexible use by different types of equipment? Yes
Supply independent from AC mains No

 

 

Conclusion

Hopefully this guide has cleared up some of the confusion about DC power ports in the context of EMC.

If you are unsure about whether your equipment falls into this classification then you can always contact us if you need help.

We generally advise that if you aren’t sure if your equipment could be used in this fashion then you should design and test your product as if they do apply. It is easier to “not-fit” or link out unwanted components than to try and add them in later.

 

conductive contamination underneath surface mount isolated power supply causing line to earth surge failure(marked up photo)

Surge Test Failure Due to PCB Manufacturing Process

We recently had a piece of customer equipment fail the IEC 61000-4-5 surge test at 2kV line-to-earth. There was a loud crack of an electrical arc forming, the unit stopped responding to communications and was making a hissing/squealing noise.

To give it the appropriate technical term, this was “A Bad Thing”.

Using the thermal camera we quickly found several hot components all on the 3V3 supply line that we supposed had been damaged by the surge. The hissing noise was the DC/DC converter in a cycle of burst mode trying to supply too much current before shutting down.

However these were all secondary side components on the isolated part of the system. How did the surge get across the safety barrier? The designer was using correctly rated parts and the PCB creepage distances were dimensioned correctly.

As part of the fault diagnosis process, we used our hot air solder rework tools to remove one of the isolated power supplies providing a low voltage supply to the AC mains monitoring circuitry. Underneath we found this:

 

conductive contamination underneath surface mount isolated power supply causing line to earth surge failure(marked up photo)

 

The samples had been hand soldered by the customer, unfortunately leaving a large amount of solder paste underneath the power supply.

Whilst this was not a short circuit across the safety barrier it did reduce the creepage distance significantly. When a 2kV surge (1.2/50us, 12 ohms) was applied from AC mains to earthed secondary this pollution was enough to cause an arc to form and into the 3V3 supply pin (centre right).

This voltage was enough to fry several components on the 3V3 line, rendering the board inoperative.

 

Lessons Learned

  • Hand soldering prototypes is OK provided you take great care in the process and cleaning the board afterwards
  • Professionally manufactured boards will generally avoid this issue
  • Apply a line-to-earth safety test on your AC mains powered products to check your samples
  • We are going to start a policy of performing a line-to-earth safety test on all AC mains powered products coming into the lab for testing from now on to try and catch problems like this.

 

 

Schaffner/Teseq NSG 5500 test system

New Automotive Test Capabilities ISO 7637-2

The best day is new equipment day 🙂

We are continuing to invest in our test capabilities. As such, the Unit 3 Compliance EMC test laboratory has just acquired a Schaffner (Teseq) NSG 5500 automotive surge/EFT test generator.

Schaffner NSG 5500 test systemWith this, we now have the capability to test your equipment to the ISO 7637-2 standard for automotive conducted transients.

The NSG 5500 will generate the ISO pulses 1, 2a, 3a and 3b, along with the Load Dump and Clamped Load Dump pulses 5a and 5b.

This gives us the capability to support your automotive product development to these standards:

  • EN 50498:2010 – Aftermarket electronics for vehicles – full testing for CE marking
  • CISPR 25 for non Immunity Related Function EUTs
  • UNECE R10.06 (pre-compliance)
  • ISO 13766-1:2018 Earth Moving Machinery (pre-compliance)
  • ISO 7637-2:2011 automotive conducted transients
  • ISO 16750-2:2012 automotive electrical loads (part)

 

Footnote:

Timing is a curious thing. Like two buses arriving simultaneously after a long wait I find things tend to cluster up. This acquisition occurred not long after publishing this blog post on how to test to the automotive standards without an automotive surge generator.

iso 7637-2 pulse 1 vs iec 61000-4-5 waveform comparison

IEC Surge/EFT Generators for ISO 7637-2 Automotive Pre-Compliance

Intro

Like most long articles, this started off as a short one. It all stemmed from a customer question:

 

“We had some issues using a LED driver that could not cope with load dump and volt spikes. Do you have any provisional tests that could determine the circuit reliability? It doesn’t have to be to [ISO 7637-2]”

 

The ISO 7637-2 standard defines automotive conducted transient test pulses on vehicle power lines (12V or 24V). It is called up by standards including:

  • UNECE Regulation 10.06 for E-marking
  • EN 50498 (aftermarket automotive equipment)
  • ISO 13766-1 (earth-moving and building construction machinery)

I don’t have an ISO 7637-2 pulse generator (edit: I do now!). Automotive surge generators are less commonly found in many EMC test labs due to their more specialised nature.

Systems are available to hire; budget for €/£1000/week for a generator that will cover Pulses 1, 2 and 3. They are also available to buy new;  expect to pay around €/£15k. If you need to cover pulse 4 then this will increase the costs yet again, mostly for the bipolar amplifier.

But, like most EMC test labs, I do have an IEC 61000-4-4 (EFT) and IEC 61000-4-5 (Surge) generator capable of 1.2/50us and 10/700us pulses.

 

Question: Could I use the IEC generator to simulate the surge pulses from the ISO generator?

 

This question comes with caveats:

  1. The aim here is pre-compliance / confidence testing with the tools available. Not to replace the ISO 7637-2 tests entirely.
  2. We are only looking at the potentially destructive Pulses 1, 2a, 3a and 3b.

 

Unit 3 Compliance can perform pre-compliance and full CE Marking testing to EN 50498. We can also perform pre-compliance testing for many of the R10 tests for E marked products.

Please get in touch for a chat if this is of interest.

 

Conclusions (TLDR)

ISO Pulse 1

  • IEC 10/700 pulse generator can be used as a close substitution for a 12V system
  • For a 24V system the 10/700 pulse is not as good a match. Follow the flowchart to select the test compromise and set the surge voltage based on the values in the tables.

iec 10-700 for pulse 1 24V surge voltage selection flowchart

iso pulse 1 24V vs iec 10-700 Best Compromise

iso pulse 1 24V vs iec 10-700 Best Compromise actual voltages and currents

ISO Pulse 2a

  • Not a good match, recommend a compromise between current and energy as shown in these tables

iso pulse 2a vs iec 1.2-50 Best Compromise

iso pulse 2a vs iec 1.2-50 Best Compromise actual voltages and currents

ISO Pulse 3a, 3b

  • IEC EFT generator is a good match and can be substituted for ISO pulse 3a and 3b

 

Pulse Parameter Comparison

Comparing the pulse widths and impedances against each other gives a mixed picture.

For Pulse 1, neither waveform is a great match with both of the ISO pulses having a longer pulse width than the 10/700 generator. Whilst the 24V bus pulse has a much higher impedance, this could be corrected with an additional series resistor in the IEC  generator output.

comparison table - iso 7637-2 pulse 1 to IEC 61000-4-5 10-700

For Pulse 2a, the 1.2/50us IEC generator appears to be an excellent match.

comparison table - iso 7637-2 pulse 2a to IEC 61000-4-5 1.2-50

For Pulse 3a and 3b, the 5/50ns EFT generator is pretty close but the width of the ISO pulse is three times bigger.

comparison table - iso 7637-2 pulse 3a 3b to IEC 61000-4-4 eft 5-50n

 

However, as we shall see below, this approach is incorrect as it does not tell the whole story.

 

Pulse Width Definition

The problem comes from how the pulse widths are defined in the standards. Let’s take the comparison between ISO Pulse 1 to IEC 10/700 comparison as an example.

e can see that the ISO pulse width is defined at the 10% crossing point, whereas the IEC pulse width is defined at the 50% crossing point.

iso 7637-2 pulse 1 vs iec 61000-4-5 waveform comparison

This is not helpful.

How do we compare a ISO 1000us @ 10% with a IEC 700us @ 50% waveform?

 

Open Circuit Ideal Waveform Comparison

I found some information over on the PSCAD website that showed the equation for the waveshape (from IEC 61000-4-5)…

exponential surge waveform formula…along with some Matlab optimised coefficients for alpha, beta and k.

From the PSCAD website “Standard Surge Waveforms” https://www.pscad.com/webhelp/Master_Library_Models/CSMF/Surge_Generators/Wavelet_Transformation_(WT).htm

 

ISO 7637-2:2011 gives the equation for the falling edge only of the pulse waveform. It also states that “The influence of the rise time is not taken into account (tr << td), which is allowed for all pulses specified in this part of ISO 7637

iso 7637-2 pulse shape equation

 

Modelling Notes

After watching a Numberphile video on coronavirus infection curve modelling I decided to give Geogebra a try for modelling these waveforms. It’s quite a useful graphing calculator package, much more powerful than I’ll ever need to use.

I also modified the equation for the IEC waveshape equation to take into account the generator and load impedances by taking the first term of the ISO equation and adding it to the start of the IEC equation.

A required surge voltage of 1V was used for simple direct comparison.

 

Pulse 1 (12V) vs IEC 10/700us

Geogebra Link

ISO 7637-2 (Pulse 1, 12V) vs IEC 61000-4-5 (10_700) geogebra

Pulse 1 (24V) vs IEC 10/700us

Geogebra Link

ISO 7637-2 (Pulse 1, 24V) vs IEC 61000-4-5 (10_700) geogebra

Pulse 2a vs IEC 1.2/50us

Geogebra Link

ISO 7637-2 (Pulse 2a) vs IEC 61000-4-5 (1.2_50) geogebra

Pulse 3a/3b vs IEC 5/50ns

Geogebra Link

ISO 7637-2 (Pulse 3a_b) vs IEC 61000-4-4 (5_50ns) geogebra

 

Review of Waveform Comparisons

For Pulse 1 we can see that the 10/700 IEC waveform is actually a really good match for Pulse 1 for a 12V bus.

The same cannot be said for the 24V bus requirement. Some further thinking is required here.

The 55 ohm impedance for the 24V version of the pulse is the 15 ohm 10/700 generator natural impedance with a series 40R resistor in addition.

comparison table - iso 7637-2 pulse 1 to IEC 61000-4-5 10-700 - GEOGEBRA RESULTS

Despite Pulse 2 looking like a good comparison initially, the modelling shows that it is actually a very poor match.

comparison table - iso 7637-2 pulse 2a to IEC 61000-4-5 1.2-50 - GEOGEBRA RESULTS

For Pulse 3, the IEC EFT generator is a very good match and should be able to be used without any issue

comparison table - iso 7637-2 pulse 3a 3b to IEC 61000-4-4 eft 5-50n GEOGEBRA RESULTS

 

Dealing With Pulse 1 (24V) and Pulse 2a

How could we go about compensating for the poor match between Pulse 1 (24V) and 10/700 IEC and between Pulse 2a and 1.2/50 IEC?

We need to ask ourselves: are we more interested in the peak voltage & current or pulse energy?

To answer this, first we need to understand the power input design of the Equipment Under Test (EUT)

 

EUT Design Assessment

It is useful to establish the following EUT design parameters:

  • Is there a discrete reverse protection diode? What is the Vrrm and Trr rating (reverse recovery time) of this part?
  • What is the maximum clamping voltage of the TVS diode and can the downstream circuitry survive this voltage?

vehicle power input protection circuit

It is important to remember that Pulse 1 is a negative going pulse caused by the disconnection of a large inductive load in parallel on the vehicle power bus. If the EUT has a reverse protection diode fitted then it’s Vrrm and Trr will change the effect of the test on the EUT.

W2AEW has a good video on diode reverse recovery time over on YouTube.

It is also important to test at full current consumption if a reverse recovery diode is present as this will affect recovery time and therefore surge performance.

 

EUT Surge Suppression

The assumption is that we are testing an EUT that contains some basic low voltage electronics of some kind. The extension of this assumption is that it has some kind of surge suppression component connected across the power inputs.

This could be a Metal Oxide Varistor (MOV) or a Transient Voltage Suppression Device (TVS). These have a non-linear impedance with voltage and will restrict or “clamp” the input voltage to a defined level. Perhaps a component like a SMBJ26CA-TR.

This clamping voltage is dictated by the impedance of the part when conducting. This would be a diode-like VI curve for a TVS or the current-dependant resistor of a MOV.

Peak current is dictated by available peak voltage and generator impedance. So we need to be interested in the peak current to ensure that the correct clamping voltage is met.

Also, because the MOV or TVS absorbs some of the pulse energy internally, these components will have a datasheet rating for pulse energy. Exceeding this could cause significant damage to the part and affect its capability to handle future surges.

 

Pulse 1 Peak Voltage & Current or Pulse Energy?

Our main tools for adjusting an IEC pulse to suit an ISO pulse are:

  • Peak voltage
  • Series impedance

The surge generator has an easily adjustable peak voltage through the control panel or software so this is the main method that will be used.

The Peak voltage is a significant consideration if the system has the reverse protection diode but the compromise test will depend on it’s voltage rating.

I’ve produced a flowchart to help selection of the right test level for using IEC 10/700 instead of ISO Pulse 1

iec 10-700 for pulse 1 24V surge voltage selection flowchart

 

 

Pulse 1 Best Compromise Voltage

I ran some more simulations in Geogebra adjusting the ratio between the IEC and ISO peak voltages and tabulated the results.

ISO 7637-2 (Pulse 1, 24V) vs IEC 61000-4-5 (10_700) Matched Pulse Energy

iso pulse 1 24V vs iec 10-700 Best Compromise

The best compromise is to minimise the total difference between current and voltage when expressed as ratios. This works out at a V_iec or around 0.6 * V_iso.

This yields the following test voltages, peak currents and pulse energies for the different severity levels.

iso pulse 1 24V vs iec 10-700 Best Compromise actual voltages and currents

 

Sidebar

It is interesting that the series impedance for the 24V version of ISO Pulse 1 is up at 50 ohms. This higher impedance implies that the surge expected in such a system would be induced from a parallel adjacent cable in a wiring loom rather than something directly connected to the ignition switch / inductive load circuit directly.

 

Pulse 2a Best Compromise Voltage

Same approach as for Pulse 1

iso pulse 2a vs iec 1.2-50 Best Compromise

iso pulse 2a vs iec 1.2-50 Best Compromise actual voltages and currents

 

 

Test Practicalities & Further Compromises

Pulse 1 Power Disconnection

The waveform for Pulse 1 shows a synchronised disconnection from the DC supply and application of the surge voltage. Since this is not easily done without

It is the surge pulse that will cause the damage rather than the momentary disconnection of voltage therefore, for these compromise tests, this is being ignored.

 

Coupling/Decoupling Network Requirements

The CDN inside the IEC test generator for mains coupling is adequate for the task of decoupling but the options inside my KeyTek ECAT test generator preclude the coupling of the 10/700 waveform. Instead, some creative front panel wiring with banana plugs will be required.

Since this CDN is designed for decoupling of surge and EFT impulses from the mains, I’m sure it will adequately protect the 12V linear power supply being used and also prevent the power connection from unduly affecting the test.

In may case, input is through a 16A IEC mains plug/socket but it is easy to make an adaptor. Output is via a BS1363 socket or, more convieniently, 4mm banana plugs.

 

 

The End.

This took way longer to research and write that I was hoping. Something in the order of three days of work was spent going backwards and forwards, thinking about it whilst doing DIY at home (nearly painting the cat as a result) and half listening to Tiger King on the TV.

I’m quite pleased with the result and I hope this eventually proves useful to someone.

 

 

 

crude differential mode surge spice circuit

Surge Testing, MOV Position and Fuse Current

I’ve been working on a power supply product for a customer with a very tight limit on the AC mains fuse rating. One of the problems this causes is during differential mode surge testing.

When the metal oxide varistor (MOV) connected line-to-line fired, the resulting current was enough to blow the fuse after a couple of surges at the specified 1kV surge (1.2/50us, 2 ohm). Clearly there wasn’t enough headroom for the product to pass the test. A different MOV with a higher clamping voltage would have reduced the peak current but at the cost of higher voltage stress elsewhere in the circuit.

I decided to look at if the position of the varistor within the circuit made a difference to the surge current in the fuse. It started off in the middle of the mains filter (PCB routing convenience I suspect) but perhaps mounting it before the filters would help? What about at the end of the filter chain, then the X2 capacitors can go to work on the surge pulse first.

The easiest way to try these scenarios was to stick it into SPICE (I like SiMetrix) and have a look at the variables. I crudely modelled the input stage of the power supply as shown below. I guessed at many of the series impedances for the fuse and the capacitor. However the leakage inductances and DCR for the inductors I measured using my excellent Peak Electronics LCR45 component meter. The MOV was simply a 1N4004 diode with a 400V reverse breakdown and the surge was only applied in the +ve direction.

crude differential mode surge spice circuit

I varied the position of the “MOV” between positions A, B and C to see if there was a difference in the surge current through the fuse (R15). Interestingly enough, there was.

surge test spice output

Red = A, Green = B, Blue = C

So the further down the filter chain that the MOV is placed, the less the peak surge current (56% lower) and the RMS current (23% lower) through the fuse.

The results were positive too. The power supply went from failing on the 5th strike at 1kV to passing 10 strikes at 1.75kV. A marked improvement resulting in a more robust product.