Posts

a roll of Wurth Elektronik copper tape - the scoundrels last resort?

So You Want To Be An EMC Engineer?

 

“Abandon hope all ye who enter here”

– Sign above the door on any EMC lab.

 

I’ve been asked a couple of times for career advice in relation to EMC. How do I get into EMC in the first place? How do I progress, perhaps moving from testing to design? Where should I take my career?

I’m generally sceptical about people who offer career advice. Much advice tends to be parochial “do this and you will succeed”. It is based entirely on what the person giving the advice thinks you should do (even if they never did it themselves.

Everyone’s upbringing and experience is so different there is no “one size fits all” approach to any career.

I can only share what I have done.

Maybe it will help.

 

Pre-Flight Check # 1: Make sure you are in the right career

Too many people are guided into careers like doctor, lawyer, engineer that might not be the best fit for them.

Make sure that engineering is right for you.

If you aren’t sure (and that’s OK) then writers like Tim Urban (career advice featuring the Yearning Octopus and your mum in disguise – long read but worthwhile) or James Altucher have lots of thought provoking advice for you.

I think being an engineer is more of a vocation than a job. If you cut most engineers through the middle it will say ENGINEER like a stick of Blackpool rock (a very British analogy). The chances are, if you are reading this, you are already in this category.

 

Pre-Flight Check # 2: Be honest about your reasons for wanting to get into EMC

Why are you wanting to get into the world of EMC?

Wanting something impressive on your CV? Think it might be a good way to get to that promotion you’ve been after? Probably will, but if these are your only reasons then you might be frustrated by the learning curve associated with the field.

One good answer is “it sounds really interesting.” If these are your thoughts then you are not wrong. I think it is one of the most fascinating fields of electronics.

In my case I was cheesed off with working in project management where I was spending less time with my soldering iron and more time in bullshit meetings. An opportunity for an EMC engineer came up in the organisation I worked for and without even thinking about it too deeply I said “I’ll do it”.

Best snap decision ever!

 

Pre-Flight Check # 3: You don’t have to be mad ^H^H^H enthusiastic to work here but it helps.

Whenever I solve an EMC problem I will generally do a little dance. It really floats my boat.

I’m lucky because I get to do what I love and people pay me. Most days I feel like I’ve won the lottery just for doing my day job.

If you don’t love the work (and it can be difficult) then its an excercise in frustration.

Try and follow what makes you want to dance in the middle of the lab. This is a fantastic lens for discovering what it is you are meant to be doing with your career.

 

General Skills: EMC is a Holistic Discipline

I spent the first 7 years of my electronics career working on…

  • power supply design
  • microcontroller coding
  • thermal CFD simulation and design
  • basic mechanical design
  • high speed digital design and test
  • system level architecture
  • cost sensitive design
  • project management

…before I became an EMC engineer. Before even realising I wanted to be an EMC engineer.

I still regularly use ALL these skills in my job as an EMC engineer.

Product design decisions made impact EMC performance.

EMC decisions impact product performance (and cost).

The two co-exist and cannot be separated.

Understanding the compromises of product design, the interaction between competing aspects (particularly cost!) is incredibly useful.

 

Go to the place least crowded / Leverage your existing skills

It might be that your team/employer/company has no EMC engineer. Take on that responsibility. This is what I ended up doing and now, 13 years later, I still love what I do.

Perhaps you have an EMC engineer colleague. Arrange to sit on their shoulder and talk to them. Ask lots of questions. Find out what area they don’t have time to work on or what problems they have. Work on that.

You are a member of an EMC team. Again, what areas do the team struggle with? What area consistently causes problems? No one is an expert on the finer points of widget calibration and the effects of temperature. Become that expert.

Find a niche (rhymes with quiche dammit) and fill it. You get to progress and inevitably find something else interesting to work on.

Follow your curiosity!

 

Get good at fixing EMC problems / make mistakes

Another fundamental truth of EMC is that There Will Be Problems.

Problems present a (usually) unique learning opportunity. Every problem I’ve solved has either taught me something or reinforced some piece of existing learning.

Spend a time in the test lab experimenting and getting an understanding of what works and what does not work.

All experiments are useful. Failed experiments or inconclusive data can help you refine your thinking.

This also leads on to mistakes. I make mistakes on a daily basis. They are usually small and easily correctable but sometimes they are bigger. Like the time I fried a piece of customers equipment by supplying 28V instead of 7.4V. Mistakes are hard teachers but you don’t forget the lesson in a hurry.

Importantly, people remember the mistake less than what you did to fix it. Own your mistakes.

 

Understand how HF current flows

In my opinion, this is the key to understanding EMC.

I recorded a presentation which might help your understanding but others have written about it before me and better (Henry Ott for instance).

Once you can visualise this you can understand the WHY behind so much of EMC.

 

Cultivate a Tolerance for Frustration

I would describe being an EMC engineer as alternately frustrating and elating.

You get better at dealing with the frustration of a problem and at solving it quicker.

Sometimes the scope of a problem is outside of your remit of available tools or skills to fix. Learn what you can and try and figure out a way forward.

 

Learn to automate

One of my favourite articles is Don’t Learn To Code, Learn To Automate.

EMC is no different to any other job, there will be repetitive tasks to perform.

Automating tests frees you up to work on other things and makes your work more consistent. Plus it gives you an opportunity to make a cup of tea whilst running a test. Maybe even a biscuit.

Automation doesn’t always go to plan or work out to be time efficient so pick your targets carefully.

 

Study Widely

Attend courses, webinars, lectures, presentations. Eventually some of it will sink in.

Sometimes you aren’t ready to grasp a piece of knowledge because you don’t have the existing framework for it to the idea to fit into.

Be wary of accepting everything at face value. Specific examples are sometimes presented without context or as globally applicable.

 

The learning never stops

I’m still trying to wrap my head around the intricacies of Power Distribution Network design, LabView coding for test automation and how antennas really work.

 

Share knowledge

Give a presentation to your colleagues about an EMC topic.

Explaining something complex to others in a simple fashion is the best marker as to how well you understand it.

I always spend lots of time on any talk I’m giving to try and make it as simple to understand as possible whilst still being useful.

 

Professional Accreditation

You may have the option of working towards accredited engineer status like the Chartered Engineer path through the IET here in the UK for example.

There are also the independent iNarte certifications which are particularly relevant for our field of work.

Some industry sectors or larger corporation might prefer you to have these qualifications. It certainly shows that you have achieved a certain level of competence and have been vetted to a certain extent by a 3rd party.

Find out what is expected or in your industry sector

I have no strong feelings either way on these professional qualifications. I investigated both whilst I was establishing Unit 3 Compliance and decided that I didn’t have the time to commit to them whilst I was setting up the business.

For me, there’s always something more impactful that I can be doing for my business than getting a piece of paper that might only make a small difference to one or two customers. I want to make a big difference for all my customers.

 

Connections and Groups

People to follow on LinkedIn

Groups on LinkedIn. Both of these are fairly active with some knowledgable members.

Other groups to join:

  • The IEEE EMC-PSTC email reflector is excellent with lots of good questions and answers on the subjects of EMC, safety and general compliance
  • IEEE EMC Society of UK and Ireland have bi yearly meetings
  • If you are in the UK, ICMA-TEL have a good email reflector with a diverse range of content including EMC, global market, safety, ROHS. Monthly meetings, mostly in the south of the UK.

 

Bonus: Copper tape is the scoundrel’s last resort

Useful as a diagnostic tool or emergency patch but not as a long term solution 😉

 

Fin.

Thanks for reading this far. If you have any ideas for what else could be included then drop me a mail.

That’s it from me. All the best on your journey.

.James

 

 

 

When ESD Protection Gets Bypassed

ESD protection is essential to control the Electro-Static Discharge event from damaging sensitive circuitry within a product. But its location within the system needs to be considered carefully and is sometimes not obvious at the schematic level.

I’d like to share with you a great example of this that I found whilst working on a customer’s system. I probably wouldn’t have spotted this without testing but I will certainly have it in mind for future design reviews.

 

The EUT

In this instance, the Equipment Under Test is formed from a 2 part metal chassis consisting a large base and a hinged lid. On the lid there is a membrane keypad that interfaces via a Flat Flexible Cable (FFC) to the front panel PCB. There is a second ribbon cable from front panel PCB to CPU board carrying the button presses to the processor.

The ESD protection is on the front panel cable, next to the point where the unit is likely to be touched – the keys. So far, so good.

system under test showing front panel, esd protection and cables

The base and lid are connected elsewhere via the typical long piece of green and yellow wire for electrical safety purposes. The inductance of this connection (long wire, single point) means that it has minimal effect at the high frequencies present in an ESD waveform. Also, the case halves are separated by a rubber environmental seal meaning there is no contact around the edge of the case.

 

EUT + ESD = ???

So what happens when the EUT is subject to an ESD event? There is no discharge to the plastic membrane keypad on the top and discharges to the Vertical Coupling Plane don’t have any effect. However, when a discharge is made to the seam between the lid and base, something interesting happens.

Because of the conditions mentioned earlier (large seam with a significant, remote impedance connecting the lid to the base) the pulse is free to couple to the internal cable assembly as shown below.

Because the ESD protection is on the front panel display board it is unable to prevent the flow of high frequency current down the cable and into the CPU.

The effect of the discharge is to cause the entire system to reset and eventually the GPIO lines responsible for monitoring the front panel keys were damaged to the point of non functionality.

Analysis

On the face of it, the designers had acted sensibly; the ESD protection was right next to the interface that was likely to be touched by the user. However, the design of the case and the routing of the cable proved to be a problem – something that was not anticipated.

With the addition of some simple capacitive filtering or ESD protection at the point at which the cable enters the CPU board this problem was overcome.

 

Lessons

There are lessons for us all here that I would summarise as:

  1. Consider every cable as a risk, even internal ones
  2. Watch out for cables crossing enclosure seams or apertures where coupling is a risk. Not a dissimilar situation to a PCB trace crossing a split in a ground plane – and we all know how bad those can be, right?
  3. Consider how the PCBs and cables will be integrated within the system through a mechanical design review (with your EMC hat on)
  4. It doesn’t matter how well designed you think your system is, testing is necessary to find these problems

 

 

 

TWITL – Shield Prototyping for Sensitive Detectors

This Week In The Lab: prototyping a shielding can for some sensitive detectors.

The customer’s equipment contained some hazardous gas detectors. Despite a good circuit design, one of these sensors wasn’t too happy when tested at industrial 10V/m levels for radiated RF immunity.

EN 50270:2015 imposes some fairly tight limits on the allowed measurement deviation under immunity conditions (depending on the type of gas).

This “fabri-cobbled” shield proved to be a success and a good proof of concept for the customer to take their design forward.

Despite the less than ideal connection made to the PCB ground plane via the screws it was sufficient to achieve a pass.

copper shield for emc emi

 

stainless steel camera system

TWITL – Underwater Camera System Industrial EMC Testing

This Week In The Lab: a nicely engineered underwater camera and lighting system. All beautifully turned, milled and TIG welded stainless steel, this thing can go deep and withstand some rough treatment. It was seriously heavy!

stainless steel camera system

The exact installation environment wasn’t known. Since it was expected to be operated in harsh conditions we opted to test to the generic industrial standards EN 61000-6-2 for immunity and EN 61000-6-4 for emissions.

A Simple EMC Fix

Just one fix required: under 10V/m radiated RF immunity testing one of the positioning motors wasn’t responding to it’s control signals. The control from user to motor was all digital so interference on those lines was unlikely.

The fault finding process was relatively straightforward this time.

We quickly figured out that the problem lay with the optical sensor that detected the shaft position and set the end stops for the range of motion. It was being triggered by the noise which caused it to think that the shaft was simultaneously at both of its end positions.

A ferrite core around the cable and a decoupling/filtering capacitor on the sensor input to the controller stopped the noise from affecting performance.